A hybrid genetic algorithm for optimization of scheduling workflow applications in heterogeneous computing systems
نویسندگان
چکیده
Workflow scheduling is a key component behind the process for an optimal workflow enactment. It is a well-known NP-hard problem and is more challenging in the heterogeneous computing environment. The increasing complexity of the workflow applications is forcing researchers to explore hybrid approaches to solve the workflow scheduling problem. The performance of genetic algorithms can be enhanced by the modification in genetic operators and involving an efficient heuristic. These features are incorporated in the proposed Hybrid Genetic Algorithm (HGA). A solution obtained from a heuristic is seeded in the initial population that provides a direction to reach an optimal (makespan)solution. The modified two fold genetic operators search rigorously and converge the algorithm at the best solution in less amount of time. This is proved to be the strength of the HGA in the optimization of fundamental objective (makespan) of scheduling. The proposed algorithm also optimizes the load balancing during the execution side to utilize resources at maximum. The performance of the proposed algorithm is analyzed by using synthesized datasets, and real-world application workflows. The HGA is evaluated by comparing the results with renowned and state of the art algorithms. The experimental results validate that the HGA outperforms these approaches and provides quality schedules with less makespans.
منابع مشابه
An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملA new Shuffled Genetic-based Task Scheduling Algorithm in Heterogeneous Distributed Systems
Distributed systems such as Grid- and Cloud Computing provision web services to their users in all of the world. One of the most important concerns which service providers encounter is to handle total cost of ownership (TCO). The large part of TCO is related to power consumption due to inefficient resource management. Task scheduling module as a key component can has drastic impact on both user...
متن کاملIntegrated modeling and solving the resource allocation problem and task scheduling in the cloud computing environment
Cloud computing is considered to be a new service provider technology for users and businesses. However, the cloud environment is facing a number of challenges. Resource allocation in a way that is optimum for users and cloud providers is difficult because of lack of data sharing between them. On the other hand, job scheduling is a basic issue and at the same time a big challenge in reaching hi...
متن کاملA Clustering Approach to Scientific Workflow Scheduling on the Cloud with Deadline and Cost Constraints
One of the main features of High Throughput Computing systems is the availability of high power processing resources. Cloud Computing systems can offer these features through concepts like Pay-Per-Use and Quality of Service (QoS) over the Internet. Many applications in Cloud computing are represented by workflows. Quality of Service is one of the most important challenges in the context of sche...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Parallel Distrib. Comput.
دوره 87 شماره
صفحات -
تاریخ انتشار 2016